分享好友 我来回答我要提问 知道首页 频道列表

注塑件表面“浮纤”最佳解决方法?

待解决2回答175点击

离问题结束还有
反对 0
举报 0
收藏 0
评论 0
暂无最佳答案    我来回答
解决方法

A、模具浇注系统的调整

模具浇注系统与“浮纤”现象的形成密切相关。针对玻纤增强塑料流动性差,而且玻纤与树脂两种组分的流动性不一致的特性,其流动距离不能过长,熔体须快速充填型腔,以保证玻纤均匀分散,不发生淤积分层而形成“浮纤”。



因此浇注系统设计的基本原则是流道截面宜大,流程宜平直而短。应采用粗短的主流道、分流道和粗大浇口,浇口可以是薄片式、扇形及环形,亦可采用多浇口形式,以使料流混乱、玻纤扩散、减少取向性。



而且要求有良好的排气功能,能及时排出因玻纤表面处理剂挥发产生的气体,以免造成熔接不良、缺料及烧伤等缺陷。



对于该把手面盖模具的浇注系统,其较长的流道流程,是造成“浮纤”现象严重的一个因素,但这是模具结构的需要,不能将其缩短,因此只有对流道截面尺寸及浇口形式和尺寸进行调整。浇口改为扇形浇口,浇口和流道尺寸则在试模过程中逐渐加大。



另外需要注意的是,“浮纤”易于在塑件壁厚较大的部位出现,这是因为熔体在该处流动速度梯度较大,熔体流动时其中心速度高,而靠近型腔壁面处速度低,使得玻纤浮露的趋势加剧,相对速度更慢,发生滞留堆积而形成“浮纤”。因此,应尽量使塑件各处壁厚均匀,并避免尖角、缺口,保证熔体流动顺畅。



B、注射成型工艺条件的优化

制定合适的成型工艺条件,对于改善“浮纤”现象至关重要。注射成型工艺各要素对玻纤增强塑料制品的影响各有不同,下面就一些可遵循的基本规律分别进行介绍。



C、温度

首先是料筒温度。由于玻纤增强塑料的熔融指数比非增强塑料低30%~70%,流动性较差,因此料筒温度较一般情况应高出10~30℃。提高料筒温度,可使熔体粘度降低,改善流动性,避免填充及熔接不良,而且有利于加大玻纤分散性和减小取向性,获得较低的制品表面粗糙度。



但料筒温度并不是越高越好,温度过高会加大尼龙聚合物氧化和降解的趋势,轻微时会发生颜色变化,严重时则产生焦化发黑。



在设置料筒温度时,应使加料段温度比常规要求略高些,稍低于压缩段即可,以利用其预热效果,降低螺杆对玻纤所产生的剪切作用,减少局部粘度的差异及对玻纤表面的破坏,保证玻纤与树脂之间的粘结强度。PA66+33%GF的熔融温度为275~280℃,最高温度不要超过300℃,其料筒温度可在此范围内选取。



其次是模具温度。模具与熔体之间的温差不宜太大,防止熔体充填时玻纤遇冷在表面淤积,形成“浮纤”,因此需采用较高的模具温度,这对于提高熔体充模性能、增加熔接痕强度、改善制品表面光洁度、减少取向和变形也是有利的。



但模具温度愈高,冷却时间愈久,成型周期延长,生产率降低,而且成型收缩率加大,故也不是越高越好。



模具温度的设置,还要考虑树脂品种、模具结构、玻纤含量等情况,在型腔复杂、玻纤含量高、充模困难时,模具温度应适当提高些。对于材料为PA66+33%GF的汽车把手面盖,我们选择的模具温度为110℃。



D、压力

注射压力对玻纤增强塑料的成型影响很大,较高的注射压力有利于充填,提高玻纤分散性,降低制品收缩率,但会增加剪切应力和取向,容易造成翘曲变形,脱模困难,甚至导致溢边问题,因此欲改善“浮纤”现象,需在稍高于非增强塑料注射压力的基础上,根据具体情况适当加大。



注射压力的选择除与制品的璧厚、浇口尺寸等因素有关外,也与玻纤含量和形态有关,一般玻纤含量愈高,玻纤长度愈长,注射压力应愈大。



螺杆背压大小对于玻纤在熔体中的均匀分散、熔体的流动性、熔体的密实度、制品的外观质量和机械物理性能均有重要的影响,通常采用稍高的背压比较有利,有助于改善“浮纤”现象。



但过高的背压会对长纤产生较大的剪切作用,使熔体易于因过热而降解,导致变色及力学性能变差。因此将背压设置得比非增强塑料略高些即可。



E、注射速度

采用较快的注射速度,可改善“浮纤”现象。提高注射速度,使玻纤增强塑料快速充满模腔,玻纤沿流动方向作快速轴向运动,有利于增加玻纤的分散性、减少取向性、提高熔接痕强度和制品的表观光洁度,但要注意避免因注射速度过快,在喷嘴口或浇口处发生"喷射"现象,形成蛇形纹缺陷,影响塑件外观。



F、螺杆转速

玻纤增强塑料塑化时,螺杆转速不宜过高,避免摩擦剪切力过大而对玻纤造成伤害,破坏玻纤表面界面状态,降低玻璃纤维与树脂之间粘合强度,加剧“浮纤”现象,特别是当玻纤较长时,会因部分玻纤断裂而出现长短不均现象,造成塑件各处强度不等,制品力学性能不稳定。



通过以上分析,可知采用高料温、高模温、高压、高速、低螺杆转速注射,对改善“浮纤”现象比较有利。
支持 0 反对 0 举报
解决方法

A、模具浇注系统的调整

模具浇注系统与“浮纤”现象的形成密切相关。针对玻纤增强塑料流动性差,而且玻纤与树脂两种组分的流动性不一致的特性,其流动距离不能过长,熔体须快速充填型腔,以保证玻纤均匀分散,不发生淤积分层而形成“浮纤”。



因此浇注系统设计的基本原则是流道截面宜大,流程宜平直而短。应采用粗短的主流道、分流道和粗大浇口,浇口可以是薄片式、扇形及环形,亦可采用多浇口形式,以使料流混乱、玻纤扩散、减少取向性。



而且要求有良好的排气功能,能及时排出因玻纤表面处理剂挥发产生的气体,以免造成熔接不良、缺料及烧伤等缺陷。



对于该把手面盖模具的浇注系统,其较长的流道流程,是造成“浮纤”现象严重的一个因素,但这是模具结构的需要,不能将其缩短,因此只有对流道截面尺寸及浇口形式和尺寸进行调整。浇口改为扇形浇口,浇口和流道尺寸则在试模过程中逐渐加大。



另外需要注意的是,“浮纤”易于在塑件壁厚较大的部位出现,这是因为熔体在该处流动速度梯度较大,熔体流动时其中心速度高,而靠近型腔壁面处速度低,使得玻纤浮露的趋势加剧,相对速度更慢,发生滞留堆积而形成“浮纤”。因此,应尽量使塑件各处壁厚均匀,并避免尖角、缺口,保证熔体流动顺畅。



B、注射成型工艺条件的优化

制定合适的成型工艺条件,对于改善“浮纤”现象至关重要。注射成型工艺各要素对玻纤增强塑料制品的影响各有不同,下面就一些可遵循的基本规律分别进行介绍。



C、温度

首先是料筒温度。由于玻纤增强塑料的熔融指数比非增强塑料低30%~70%,流动性较差,因此料筒温度较一般情况应高出10~30℃。提高料筒温度,可使熔体粘度降低,改善流动性,避免填充及熔接不良,而且有利于加大玻纤分散性和减小取向性,获得较低的制品表面粗糙度。



但料筒温度并不是越高越好,温度过高会加大尼龙聚合物氧化和降解的趋势,轻微时会发生颜色变化,严重时则产生焦化发黑。



在设置料筒温度时,应使加料段温度比常规要求略高些,稍低于压缩段即可,以利用其预热效果,降低螺杆对玻纤所产生的剪切作用,减少局部粘度的差异及对玻纤表面的破坏,保证玻纤与树脂之间的粘结强度。PA66+33%GF的熔融温度为275~280℃,最高温度不要超过300℃,其料筒温度可在此范围内选取。



其次是模具温度。模具与熔体之间的温差不宜太大,防止熔体充填时玻纤遇冷在表面淤积,形成“浮纤”,因此需采用较高的模具温度,这对于提高熔体充模性能、增加熔接痕强度、改善制品表面光洁度、减少取向和变形也是有利的。



但模具温度愈高,冷却时间愈久,成型周期延长,生产率降低,而且成型收缩率加大,故也不是越高越好。



模具温度的设置,还要考虑树脂品种、模具结构、玻纤含量等情况,在型腔复杂、玻纤含量高、充模困难时,模具温度应适当提高些。对于材料为PA66+33%GF的汽车把手面盖,我们选择的模具温度为110℃。



D、压力

注射压力对玻纤增强塑料的成型影响很大,较高的注射压力有利于充填,提高玻纤分散性,降低制品收缩率,但会增加剪切应力和取向,容易造成翘曲变形,脱模困难,甚至导致溢边问题,因此欲改善“浮纤”现象,需在稍高于非增强塑料注射压力的基础上,根据具体情况适当加大。



注射压力的选择除与制品的璧厚、浇口尺寸等因素有关外,也与玻纤含量和形态有关,一般玻纤含量愈高,玻纤长度愈长,注射压力应愈大。



螺杆背压大小对于玻纤在熔体中的均匀分散、熔体的流动性、熔体的密实度、制品的外观质量和机械物理性能均有重要的影响,通常采用稍高的背压比较有利,有助于改善“浮纤”现象。



但过高的背压会对长纤产生较大的剪切作用,使熔体易于因过热而降解,导致变色及力学性能变差。因此将背压设置得比非增强塑料略高些即可。



E、注射速度

采用较快的注射速度,可改善“浮纤”现象。提高注射速度,使玻纤增强塑料快速充满模腔,玻纤沿流动方向作快速轴向运动,有利于增加玻纤的分散性、减少取向性、提高熔接痕强度和制品的表观光洁度,但要注意避免因注射速度过快,在喷嘴口或浇口处发生"喷射"现象,形成蛇形纹缺陷,影响塑件外观。



F、螺杆转速

玻纤增强塑料塑化时,螺杆转速不宜过高,避免摩擦剪切力过大而对玻纤造成伤害,破坏玻纤表面界面状态,降低玻璃纤维与树脂之间粘合强度,加剧“浮纤”现象,特别是当玻纤较长时,会因部分玻纤断裂而出现长短不均现象,造成塑件各处强度不等,制品力学性能不稳定。



通过以上分析,可知采用高料温、高模温、高压、高速、低螺杆转速注射,对改善“浮纤”现象比较有利。
支持 0 反对 0 举报